7,358 research outputs found

    Efficient reconstruction of band-limited sequences from nonuniformly decimated versions by use of polyphase filter banks

    Get PDF
    An efficient polyphase structure for the reconstruction of a band-limited sequence from a nonuniformly decimated version is developed. Theoretically, the reconstruction involves the implementation of a bank of multilevel filters, and it is shown that how all these reconstruction filters can be obtained at the cost of one Mth band low-pass filter and a constant matrix multiplier. The resulting structure is therefore more general than previous schemes. In addition, the method offers a direct means of controlling the overall reconstruction distortion T(z) by appropriate design of a low-pass prototype filter P(z). Extension of these results to multiband band-limited signals and to the case of nonconsecutive nonuniform subsampling are also summarized, along with generalizations to the multidimensional case. Design examples are included to demonstrate the theory, and the complexity of the new method is seen to be much lower than earlier ones

    Classical sampling theorems in the context of multirate and polyphase digital filter bank structures

    Get PDF
    The recovery of a signal from so-called generalized samples is a problem of designing appropriate linear filters called reconstruction (or synthesis) filters. This relationship is reviewed and explored. Novel theorems for the subsampling of sequences are derived by direct use of the digital-filter-bank framework. These results are related to the theory of perfect reconstruction in maximally decimated digital-filter-bank systems. One of the theorems pertains to the subsampling of a sequence and its first few differences and its subsequent stable reconstruction at finite cost with no error. The reconstruction filters turn out to be multiplierless and of the FIR (finite impulse response) type. These ideas are extended to the case of two-dimensional signals by use of a Kronecker formalism. The subsampling of bandlimited sequences is also considered. A sequence x(n ) with a Fourier transform vanishes for |ω|&ges;Lπ/M, where L and M are integers with L<M, can in principle be represented by reducing the data rate by the amount M/L. The digital polyphase framework is used as a convenient tool for the derivation as well as mechanization of the sampling theorem

    Circulant and skew-circulant matrices as new normal-form realization of IIR digital filters

    Get PDF
    Normal-form fixed-point state-space realization of IIR (infinite-impulse response) filters are known to be free from both overflow oscillations and roundoff limit cycles, provided magnitude truncation arithmetic is used together with two's-complement overflow features. Two normal-form realizations are derived that utilize circulant and skew-circulant matrices as their state transition matrices. The advantage of these realizations is that the A-matrix has only N (rather than N2) distinct elements and is amenable to efficient memory-oriented implementation. The problem of scaling the internal signals in these structures is addressed, and it is shown that an approximate solution can be obtained through a numerical optimization method. Several numerical examples are included

    Disorder induced field effect transistor in bilayer and trilayer graphene

    Full text link
    We propose use of disorder to produce a field effect transistor (FET) in biased bilayer and trilayer graphene. Modulation of the bias voltage can produce large variations in the conductance when the disorder's effects are confined to only one of the graphene layers. This effect is based on the bias voltage's ability to select which of the graphene layers carries current, and is not tied to the presence of a gap in the density of states. In particular, we demonstrate this effect in models of gapless ABA-stacked trilayer graphene, gapped ABC-stacked trilayer graphene, and gapped bilayer graphene.Comment: 21 pages, 7 figure

    Probing neutrino production in high-energy astrophysical neutrino sources with the Glashow Resonance

    Full text link
    The flavor composition of high-energy neutrinos carries important information about their birth. However, the two most common production scenarios, pppp (hadronuclear) and pγp\gamma (photohadronic) processes, lead to the same flavor ratios when neutrinos and antineutrinos cannot be distinguished. The Glashow resonant interaction νˉe+eW\bar{\nu}_e+e^- \rightarrow W^- becomes a window to differentiate the antineutrino contribution from the total diffuse neutrino flux, thus lifting this degeneracy. We examine the power of Glashow resonant events in measuring the fraction of the νˉe\bar{\nu}_e flux with current IceCube data, and produce projected sensitivities based on the combined exposure of planned Cherenkov neutrino telescopes around the globe. We find that pppp and pγp\gamma can be distinguished at a 2σ\sigma significance level in the next decades, in both an event-wise analysis and a more conservative statistical analysis, even with pessimistic assumptions on the spectral index of the astrophysical flux. Finally, we consider the sensitivity of future experiments to mixed production mechanisms.Comment: 15 pages, 9 figure

    Quantum control via a genetic algorithm of the field ionization pathway of a Rydberg electron

    Get PDF
    Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n)4(1/n^*)^4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus directing the signal to the desired arrival time, a perturbing electric field produced by an arbitrary waveform generator is added to a slowly rising electric field. A genetic algorithm evolves the perturbing field in an effort to achieve the target time-resolved field ionization signal.Comment: Corrected minor typographic errors and changed the titl

    Fundamentals of Physical Layer Anonymous Communications: Sender Detection and Anonymous Precoding

    Get PDF
    In the era of big data, anonymity is recognized as an important attribute in privacy-preserving communications. The existing anonymous authentication and routing designs are applied at higher layers of networks, ignoring the fact that physical layer (PHY) also contains privacy-critical information. In this paper, we introduce the concept of PHY anonymity, and reveal that the receiver can unmask the sender&#x2019;s identity by only analyzing the PHY information, i.e., the signaling patterns and the characteristics of the channel. We investigate two scenarios, where the receiver has more antennas than the sender in the strong receiver case, and vice versa in the strong sender case. For each scenario, we first investigate sender detection strategies at the receiver, and then we develop anonymous precoding to address anonymity while guaranteeing high signal-to-interference-plus-noise-ratio (SINR) for communications. In particular, an interference suppression anonymous precoder is first proposed, assisted by a dedicated transmitter-side phase equalizer for removing phase ambiguity. Afterwards, a constructive interference anonymous precoder is investigated to utilize inter-antenna interference as a beneficial element without loss of the sender&#x2019;s anonymity. Simulations demonstrate that the anonymous precoders are able to preserve the sender&#x2019;s anonymity and simultaneously guarantee high SINR, opening a new dimension on PHY anonymous designs

    A Proposed Model for the Investigation of Imitation Behavior on ERP Adoption

    Get PDF
    In the proposed project, we will investigate the imitation effect on technology adoption using Enterprise Resource Planning (ERP) systems as an example. This approach will offer a completely new perspective on IT adoption as a less rational behavior, even for critical ERP investment at the organizational level. Along with this investigation of the imitation-adoption relationship, our research will evaluate the moderating effect of experience on imitation behavior. We believe that imitation behavior will be strongest when an organization is considering ERP for initial adoption. However, when an organization has accumulated „experience‟ of ERP over time, its adoption of subsequent ERP modules will probably follow a more rational decision process, as explained by traditional adoption theories
    corecore